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We present a numerical simulation of the double slit interference experiment realized by F. Shimizu,
K. Shimizu and H. Takuma with ultracold atoms. We show how the Feynman path integral method
enables the calculation of the time-dependent wave function. Because the evolution of the
probability density of the wave packet just after it exits the slits raises the issue of interpreting the
wave/particle dualism, we also simulate trajectories in the de Broglie–Bohm interpretation. ©2005

American Association of Physics Teachers.
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I. INTRODUCTION

In 1802, Thomas Young~1773–1829!, after observing
fringes inside the shadow of playing cards illuminated by
sun, proposed his well-known experiment that clearly sho
the wave nature of light.1 He used his new wave theory t
explain the colors of thin films~such as soap bubbles!, and,
relating color to wavelength, he calculated the approxim
wavelengths of the seven colors recognized by Newt
Young’s double slit experiment is frequently discussed
textbooks on quantum mechanics.2

Two-slit interference experiments have since been real
with massive objects, such as electrons,3–6 neutrons,7,8 cold
neutrons,9 atoms,10 and more recently, with coherent en
sembles of ultracold atoms,11,12 and even with mesoscopi
single quantum objects such as C60 and C70.13,14

This paper discusses a numerical simulation of an exp
ment with ultracold atoms realized in 1992 by F. Shimizu,
Shimizu, and H. Takuma.11 The first step of this atomic in
terference experiment consisted in immobilizing and cool
a set of neon atoms, massm53.349310226 kg, inside a
magneto-optic trap. This trap confines a set of atoms i
specific quantum state in a space of.1 mm, using cooling
lasers and a nonhomogeneous magnetic field. The initial
locity of the neon atoms, determined by the temperature
the magneto-optic trap~approximatelyT52.5 mK) obeys a
Gaussian distribution with an average value equal to z
and a standard deviationsv5AkBT/m.1 m/s; kB is Boltz-
mann’s constant.

To free some atoms from the trap, they were excited w
another laser with a waist of 30mm. Then, an atomic sourc
whose diameter is about 331025 m and 1023 m in the z
direction was extracted from the magneto-optic trap. A s
set of these free neon atoms start to fall, pass throug
double slit placed at,1576 mm below the trap, and strike
detection plate at,25113 mm. Each slit isb52 mm wide,
and the distance between slits, center to center, isd
56 mm. In what follows, we will call ‘‘before the slits’’ the
space between the source and the slits, and ‘‘after the s
the space on the other side of the slits. The sum of the ato
impacts on the detection plate creates the interference pa
shown in Fig. 1.

The first calculation of the wave function double slit e
periment using electrons4 was done using the Feynman pa
1 Am. J. Phys.73 ~3!, March 2005 http://aapt.org/aj
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integral method.15 However, this calculation has some lim
tations. It covered only phenomena after the exit from
slits, and did not consider realistic slits. The slits, whi
could be well represented by a functionG(y) with G(y)
51 for 2b<y<b andG(y)50 for uyu.b, were modeled

by a Gaussian functionG(y)5e2y2/2b2
. Interference was

found, but the calculation could not account for diffractio
at the edge of the slits. Another simulation with photon
with the same approximations, was done recently.16 Some
interesting simulations of the experiments on single a
double slit diffraction of neutrons9 were done.17

The simulations discussed here cover the entire exp
ment, beginning with a single source of atoms, and treat
slit realistically, also considering the initial dispersion of th
velocity. We will use the Feynman path integral method
calculate the time-dependent wave function. The calcula
and the results of the simulation are presented in Sec. II.
evolution of the probability density of the wave packet ju
after the slits raises the question of the interpretation of
wave/particle dualism. For this reason, it is interesting
simulate the trajectories in the de Broglie18 and Bohm19 for-
malism, which give a natural explanation of particle impac
These trajectories are discussed in Sec. III.

II. CALCULATION OF THE WAVE FUNCTION
WITH FEYNMAN PATH INTEGRAL

In the simulation we assume that the wave function
each source atom is Gaussian inx and y ~the horizontal
variables perpendicular and parallel to the slits! with a stan-
dard deviations05sx5sy510 mm. We also assume tha
the wave function is Gaussian inz ~the vertical variable!
with zero average and a standard deviationsz.0.3 mm. The
origin (x50,y50,z50) is at the center of the atomic sourc
and the center of the Gaussian.

The small amount of vertical atomic dispersion compa
to typical vertical distances,;100 and 200 mm, allows us to
make a few approximations. Each source atom has an in
velocity v5(v0x ,v0y ,v0z) and wave vector k
5(k0x ,k0y ,k0z) defined ask5mv/\. We choose a wave
number at random according to a Gaussian distribution w
zero average and a standard deviationsk5skx

5sky
5skz

5msv /)\.23108 m21, corresponding to the horizonta
1p © 2005 American Association of Physics Teachers
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and vertical dispersion of the atoms’ velocity inside the clo
~trap!. For each atom with initial wave vectork, the wave
function at timet50 is

c0~x,y,z;k0x ,k0y ,k0z!5c0x
~x;k0x!c0y

~z;k0y!c0z
~z;k0z!

5~2ps0
2!21/4e2x2/4s0

2
eik0xx

3~2ps0
2!21/4e2y2/4s0

2
eik0yy

3~2psz
2!21/4e2z2/4sz

2
eik0zz. ~1!

The calculation of the solutions to the Schro¨dinger equa-
tion were done with the Feynman path integral method20

which defines an amplitude called the kernel. The ker
characterizes the trajectory of a particle starting from
point a5(xa ,ya ,za) at time ta and arriving at the pointb
5(xb ,yb ,zb) at timetb . The kernel is a sum of all possibl
trajectories between these two points and the timesta and
tb .

By using the classical form of the Lagrangian

L~ ẋ,ẏ,ż,z,t !5m
ẋ2

2
1m

ẏ2

2
1m

ż2

2
1mgz. ~2!

Feynman20 defined the kernel by

K~b,tb ;a,ta!;expS i

\
Scl~b,tb ;a,ta! D

5expS i

\ E
ta

tb
L~ ẋ,ẏ,ż,z,t !dtD , ~3!

with *2`
1`*2`

1`K(b,tb ;a,ta)dxadyadza51. Hence

K~b,tb ;a,ta!5Kx~xb ,tb ;xa ,ta!Ky~yb ,tb ;ya ,ta!

3Kz~zb ,tb ;za ,ta! ~4!

with

Kx~xb ,tb ;xa ,ta!5S m

2ip\~ tb2ta! D
1/2

3exp
im

\ S ~xb2xa!2

2~ tb2ta! D , ~5a!

Ky~yb ,tb ;ya ,ta!5S m

2ip\~ tb2ta! D
1/2

3exp
im

\ S ~yb2ya!2

2~ tb2ta! D , ~5b!

Fig. 1. Schematic configuration of the experiment.
2 Am. J. Phys., Vol. 73, No. 3, March 2005
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Kz~zb ,tb ;za ,ta!5S m

2ip\~ tb2ta! D
1/2

3exp
im

\ S ~zb2za!2

2~ tb2ta! Dexp
im

\ S g

2
~zb1za!

3~ tb2ta!2
g2

24
~ tb2ta!3D . ~5c!

For each atom with initial wave vectork, let us designate
by c(a,ta ;k) the wave function at timeta . We call S the set
of points a where this wave function does not vanish. It
then possible to calculate the wave function at a later timeta
at pointsb such that there exits a straight line connectinga
andb for any pointaPS. In this case, Feynman20 has shown
that:

c~b,t;k0x ,k0y ,k0z!

5E
(xa ,ya ,za)PS

K~b,t;a,ta!

3c~a,ta ;k0x ,k0y ,k0z!dxa ,dya ,dza . ~6!

For the double slit experiment, two steps are then nec
sary for the calculation of the wave function: a first st
before the slits and a second step after the slits.

If we substitute Eqs.~1! and ~4! in Eq. ~6!, we see that
Feynman’s path integral allows a separation of variables,
is

c~x,y,z,t;k0x ,k0y ,k0z!

5cx~x,t;k0x!cy~y,t;k0y!cz~z,t;k0z!. ~7!

References 11 and 21 treat the vertical variablez classi-
cally, which is shown in Appendix A to be a good approx
mation. Hence, we havez(t)5z01v0zt1gt2/2. The arrival
time of the wave packet at the slits ist1(v0z ,z0)
5A2(,12z0)/g 1(v0z /g)22 v0z /g. For v0z50 and z0

50, we havet15A2,1 /g5124 ms and the atoms have be
accelerated tovz15gt151.22 m/s on average at the sli
Thus the de Broglie wavelengthl5\/mvz151.831028 m
is two orders of magnitude smaller than the slit width, 2mm.

Because the two slits are very long compared with th
other dimensions, we will assume they are infinitely lon
and there is no spatial constraint ony. Hence, we have for an
initial fixed velocity v0y

cy~y,t;k0y!5E
ya

Ky~y,t;ya ,ta50!c0~ya ;k0y!dya .

~8!

Thus

cy~y,t;k0y!5~2ps0
2~ t !!21/4expF2

~y2v0yt !
2

4s0s0~ t !

1 ik0y~y2v0yt !G ~9!

with s0(t)5s0(11 i\t/2ms0
2).

The wave packet is an infinite sum of wave packets w
fixed initial velocity. The probability density as a function o
y is
2Michel Gondran and Alexandre Gondran
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ry~y,t !5E
2`

1`

~2pt2!21/2e2ky
2/2t2

ucy~y,t;ky!u2dky

5~2p«0
2~ t !!21/2e2y2/2«0

2(t) ~10!

with «0
2(t)5s0

2(t)1(\tsk/m)2 and s0
2(t)5s0

2

1( t/2ms0
2)2. Because we know the dependence of the pr

ability density ony, in what follows we consider only the
wave functioncx(x,t;k0x).

A. Wave function before the slits

Before the slits, we have

cx~x,t;k0x!5~2ps0
2~ t !!21/4expF2

~x2v0xt !
2

4s0s0~ t !

1 ik0x~x2v0xt !G , ~11!

rx~x,t !5~2p«0
2~ t !!21/2expF2

x2

2«0
2~ t !G . ~12!

It is interesting that the scattering of the wave packet inx is
caused by the dispersion of the initial positions0 and by the
dispersionsk of the initial velocity v0x ~see Fig. 2!. Only
0.1% of the atoms will cross through one of the slits; t
others will be stopped by the plate.

B. Wave function after the slits

The wave function after the slits with fixedz0 and k0z

5mv0z /\ for t>t1(v0z ,z0) is deduced from the values o
the wave function at slits A and B~see Fig. 3! by using Eq.
~6!. We obtain

cx~x,t;k0x ,k0z ,z0!5cA1cB ~13!

with

cA5E
A
Kx~x,t;xa ,t1~v0z ,z0!!

3cx~xa ,t1~v0z ,z0!;k0x!dxa , ~14a!

Fig. 2. Densityrx(x,z) before the slits. The time evolution is obtained fro
the figure by usingz5z01v0zt1 gt2/2.
3 Am. J. Phys., Vol. 73, No. 3, March 2005
-

cB5E
B
Kx~x,t;xb ,t1~v0z ,z0!!

3cx~xb ,t1~v0z ,z0!;k0x!dxb , ~14b!

wherecx(xa ,t1(v0z ,z0);k0x) andcx(xb ,t1(v0z ,z0);k0x) are
given by Eq. ~11!, whereas Kx(x,t;xa ,t1(v0z ,z0)) and
Kx(x,t;xb ,t1(v0z ,z0)) are given by Eq.~5a!.

The probability density is

rx~x,t;k0z ,z0!5E
2`

1`

~2psk
2!21/2

3expS2 k0x
2

2sk
2D ucx~x,t;k0x ,k0z ,z0!u2dk0x .

~15!

The arrival timet2 of the center of the wave packet on th
detecting plate depends onz0 and v0z . We have t2

5A2(,11,22z0)/g 1(v0z /g)22 v0z /g. For z050 and
v0z50, t25A2(,11,2)/g5196 ms and the atoms are a
celerated tovz25gt251.93 m/s.

The calculation ofrx(x,t;k0z ,z0) at any (x,t) with k0z

andz0 given andt>t1 is done by a double numerical inte
gration: ~a! Eq. ~15! is integrated numerically using a dis
cretization ofk0x into 20 values;~b! the integration of Eq.
~13! using Eqs.~14! is done by a discretization of the slitsA
andB into 2000 values each. Figure 4 shows the cross s
tions of the probability density (ucA1cBu2) for z050, v0z

50 (k0z50) and for several distances (Dz5 1
2gt22 1

2gt1
2)

after the double slit: 1 and 10mm, and 0.1, 0.5, 1, and 11
mm.

The calculation method enables us to compare the ev
tion of the probability density when both slits are simult
neously open~interference:ucA1cBu2) with the sum of the
evolutions of the probability density when the two slits a
successively opened~sum of two diffraction phenomena
(ucAu21ucBu2). Figure 4 shows the probability densit
(ucAu21ucBu2) for the same cases. Note that the differen

Fig. 3. Schematic representation of the experiment: calculation metho
the wave function after the slits.
3Michel Gondran and Alexandre Gondran
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between the two phenomena does not exist immediatel
the exit of the two slits; differences appear only after so
millimeters after the slits.

Figures 5–7 show the evolution of the probability dens
At 0.1 mm after the slits, we know through which slit ea
atom has passed, and thus the interference phenomenon
not yet exist~see Figs. 4 and 7!. Only at 1 mm after the slits
do the interference fringes become visible, just as we wo
expect by the Fraunhoffer approximation~see Figs. 4 and 6!.

Fig. 4. Comparison betweenucA1cBu2 ~plain line! and ucAu21ucBu2 ~dot-
ted line! with z050 andk0z50 at ~a! 1 mm, ~b! 10 mm, ~c! 0.1 mm,~d! 0.5
mm, ~e! 1 mm, and~f! 113 mm after the slits.

Fig. 5. ~Color online.! Evolution of the probability densityrx(x,t;k0z

50,z050) from the source to the detector screen.
4 Am. J. Phys., Vol. 73, No. 3, March 2005
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C. Comparison with the Shimizu experiment

In the Shimizu experiment, atoms arrive at the detect
screen betweent5tmin and tmax. To obtain the measured
probability density in this time interval, we have to sum t
probability density above the initial positionz0 and their ini-
tial velocity v0z compatible withtmin<t2<tmax, that is

rx~x,tmin<t<tmax!

5E
tmin<t2<tmax

rx~x,t2 ;k0z ,z0!

3e2k0z
2 /2t2

e2z0
2/2sz

2
dk0zdz0 . ~16!

The positions at the detection screen can only be measure
about 80mm, and thus to compare our results with the me
sured results, we perform the average

rmeasured~x,tmin<t<tmax!

5
1

80 mm E
x240 mm

x140 mm

r~u,tmin<t<tmax!du. ~17!

Figure 8 compares those calculations to the results foun

Fig. 6. ~Color online.! Evolution of the probability densityrx(x,t;k0z

50,z050) for the first millimeter after the slits.

Fig. 7. ~Color online.! Evolution of the probability densityrx(x,t;k0z

50,z050) for the first 100mm after the slits.
4Michel Gondran and Alexandre Gondran
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Ref. 11. The experimental fringe separation is narrower t
in our calculation, see Figs. 8 and 11. This difference
explained by a technical problem in the Shimi
experiment.11

III. IMPACTS ON SCREEN AND TRAJECTORIES

In the Shimizu experiment the interference fringes are
served through the impacts of the neon atoms on a detec
screen. It is interesting to simulate the neon atoms’ traje
ries in the de Broglie–Bohm interpretation,18,19,22,23,27which
accounts for atom impacts. In this formulation of quantu
mechanics, the particle is represented not only by its w
function, but also by the position of its center of mass. T
atoms have trajectories which are defined by the sp
v(x,y,z,t) of the center of mass, which at position (x,y,z) at
time t is given by24,25

v~x,y,z,t !5
¹S~x,y,z,t !

m
1

¹ logr~x,y,z,t !3s

m

5
\

mr F Im~c* ¹c!1Re~c* ¹c!3
s

usuG , ~18!

where c(x,y,z,t)5Ar(x,y,z,t) exp((i/\)S(x,y,z,t)) and s is
the spin of the particle. Let us see how this interpretat
gives the same experimental results as the Copenhagen
pretation.

If c satisfies the Schro¨dinger equation

i\
]c

]t
52

\2

2m
¹2c1Vc ~19!

with the initial condition c(x,y,z,0)5c0(x,y,z)
5Ar0(x,y,z) exp((i/\)S0(x,y,z)), thenr andS satisfy

]S

]t
1

1

2m
~¹S!21V2

\2

2m

nAr

Ar
50, ~20!

Fig. 8. Comparison of the probability density measured experimentally
Shimizu ~see Ref. 11! ~left! and the probability density calculated nume
cally with our model~right!.
5 Am. J. Phys., Vol. 73, No. 3, March 2005
n
s

-
on
o-

e
e
d

n
ter-

]r

]t
1¹•S r

¹S

m D50, ~21!

with initial conditions S(x,y,z,0)5S0(x,y,z) and
r(x,y,z,0)5r0(x,y,z).

In both interpretations,r(x,y,z,t)5uc(x,y,z,t)u2 is the
probability density of the particles. But, in the Copenhag
interpretation, it is a postulate for eacht ~confirmed by ex-
perience!. In the de Broglie–Bohm interpretation,
r0(x,y,z) is the probability density of presence of particl
for t50 only, thenr(x,y,z,t) must be the probability den
sity of the presence of particles without any postulate
cause Eq.~21! becomes the continuity equation

]r

]t
1¹•~rv!50 ~22!

~thanks to v5 ¹S/m1¹3(ln r/m)s), which is obviously
the fluid mechanics equation of conservation of the dens
The two interpretations therefore yield statistically identic
results. Moreover, the de Broglie–Bohm theory naturally e
plains the individual impacts.

In the initial de Broglie–Bohm interpretation,18,19 which
was not relativistic invariant, the velocity was not given b
Eq. ~18!, but byv5 ¹S/m which does not involve the spin
In the Shimizu experiment, the spin of each neon atom
the magnetic trap was constant and vertical:s5(0,0,\/2).
In our case the spin-dependent term¹ logr/m3s
5 \/2mr (]r/]y ,2 ]r/]x,0) is negligible after the slit, bu
not before.

For the simulation, we choose at random~from a normal
distribution f (0,0,0;sk ,sk ,sk) the wave vector k
5(k0x ,k0y ,k0z) to define the initial wave function~1! of the
atom prepared inside the magneto-optic trap. For the
Broglie–Bohm interpretation, we also choose at random
initial position (x0 ,y0 ,z0) of the particle inside its wave
packet ~normal distribution f ((0,0,0);(s0 ,s0 ,sz))). The
trajectories are given by

dx

dt
5vx~x,t !5

1

m

]S

]x
1

\

2mr

]r

]y
, ~23a!

dy

dt
5vy~x,t !5

1

m

]S

]y
2

\

2mr

]r

]x
, ~23b!

dz

dt
5vz~x,t !5

1

m

]S

]z
, ~23c!

wherer(x,y,t;k0x ,k0y)5ucx(x,t;k0x)cy(y,t;k0y)u2 and cx

andcy are given by Eqs.~8!–~13!.

A. Trajectories before the slits

Before the slits, Appendix B givesz(t)5z0 sz(t)/sz

1v0zt1
1
2gt2, x(t)5v0xt1Ax0

21y0
2s0(t)/s0 cosw(t), and

y(t)5v0yt1Ax0
21y0

2s0(t)/s0 sinw(t), with w(t)5w0

1arctan(2\t/2ms0
2), cosw05x0 /Ax0

21y0
2 and sinw0

5y0 /Ax0
21y0

2. For a given wave vectork and an initial po-
sition (x0 ,y0 ,z0) inside the wave packet, an atom of neo
will arrive at a given position on the plate containing th
slits. Notice that the term¹ logr3s/m adds to the trajectory
defined by¹S/m a rotation of2p/2 around the spin axis
~the z axis!.

y

5Michel Gondran and Alexandre Gondran
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slit
The source atoms do not all pass through the slits; mos
them are stopped by the plate. Only atoms having a sm
horizontal velocityv0x can go through the slits. Indeed a
atom with an initial velocityv0x and an initial positionx0 ,y0

arrives at the slits att5t1 at the horizontal positionx(t1)
5v0xt11y0(s0(t1)/s0). For this atom to go through one o
the slits, it is necessary thatux(t1)u< x̄, with x̄5(d1b)/2
5431026 m and22s0<y0<2s0 andt1.0.124 s. Conse-
quently, it is necessary that the initial velocities of the ato
satisfy uv0xu<( x̄12s0(t1))/t15 v̄0x.3.931024 m/s. The
double slit filters the initial horizontal velocities and tran
forms the source atoms after the slits into a qua
monochromatic source. The horizontal velocity of an at
leads to a horizontal shift of the atom’s impacts on the
tection screen. The maximum shift isDx5 v̄0xDt, whereDt
is the time for the atom to go from the slits to the scre
(Dt5t22t1.0.072 s); henceDx.2.831025 m. This shift
does not produce a blurring of the interference fringes
cause the interference fringes are separated from one an
by 2531025 m@Dx. Note that if the source was nearer
the double slit ~for example if ,155 mm, then Dx.10
31025 m), the slit would not filter enough horizontal ve
locities and consequently the interference fringes would
be visible.

The system appears fully deterministic. If we know t
position and the velocity of an atom inside the source, th
we know if it can go through the slit or not. Figure 9 show
some trajectories of the source atoms as a function of t
initial velocities. Only atoms with a velocityuv0xu< v̄0x can
go through the slits.

B. Velocities and trajectories after the slits

In what follows, we consider only atoms that have go
through one of the slits. After the slits, we still havez(t)
5v0zt1

1
2gt21z0(sz(t)/sz), but now vx(t) and vy(t) and

x(t) andy(t) have to be calculated numerically. The calc
lation of vx(x,t) is done by a numerical computation of a
integral in x above the slits A and B~see Appendix B!;
x(t) is calculated with a Runge–Kutta method.26 We use
a time stepDt which is inversely proportional to the acce
eration. At the exit of the slit,Dt is very small: Dt
.1028 s; it increases toDt.1024 s at the detection screen
Figure 10 shows the trajectories of the atoms just after
slits; x0 and y0 are drawn at random,z050, with v0x5v0z

50.

Fig. 9. Trajectories of atoms before the slit. Note that if the initial velocit
uv0xu>3.931024 m/s, then no atoms can cross the slit.
6 Am. J. Phys., Vol. 73, No. 3, March 2005
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C. Impacts on the screen

We observe the impact of each particle on the detec
screen as shown by the last image in Fig. 12. The cla
explanation of these individual impacts on the screen is
reduction of the wave packet. An alternative interpretation
that the impacts are due to the decoherence caused by
interaction with the measurement apparatus.

In the de Broglie–Bohm formulation of quantum mecha
ics, the impact on the screen is the position of the cente
mass of the particle, just as in classical mechanics. Figure
shows our results for 100, 1000, and 5000 atoms whose
tial position (x0 ,y0 ,z0) are drawn at random. The last imag
corresponds to 6000 impacts of the Shimizu experimen11

The simulations show that it is possible to interpret the p
nomena of interference fringes as a statistical consequenc
particle trajectories.

IV. SUMMARY

We have discussed a simulation of the double slit exp
ment from the source of emission, passing through a real

Fig. 10. Trajectories of atoms~k0x5k0z50!.

Fig. 11. Zoom of trajectories of atoms for the first millimeters after the
(k0x5k0z50).
6Michel Gondran and Alexandre Gondran
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Fig. 12. Atomic impacts on the scree
of detection. Results for~a! 100, ~b!
1000, and~c! 5000 atoms;~d! the last
image corresponds to 6000 impacts
the Shimizu experiment.
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double slit, and its arrival at the detector. This simulation
based on the solution of Schro¨dinger’s equation using the
Feynman path integral method. A simulation with the para
eters of the 1992 Shimizu experiment produces results c
sistent with their observations. Moreover, the simulation p
vides a detailed description of the phenomenon in the sp
just after the slits, and shows that interference begins o
after 0.5 mm. We also show that it is possible to simulate
trajectories of particles by using the de Broglie–Bohm int
pretation of quantum mechanics.

APPENDIX A: CALCULATION OF cZ„Z,T;K0z…

Because there are no constraints on the vertical variabz,
we find using Eqs.~5c! and~6! for all t.0 ~before and after
the double slit! that

cz~z,t;k0z!5E
S
Kz~z,t;za ,t50!3c0z

~za ;k0z!dza ,

~A1!

where the integration is done over the set S of the pointsza ,
where the initial wave packetc0z

(za ;k0z) does not vanish.
We obtain
7 Am. J. Phys., Vol. 73, No. 3, March 2005
s

-
n-
-
ce
ly
e
-

cz~z,t;k0z!5~2psz
2~ t !!21/4expS 2

~z2v0zt2gt2/2!2

4szsz~ t ! D
3expF im

\ S ~v0z1gt!~z2v0zt/2!

2
mg2t3

6 D G , ~A2!

wheresz(t)5sz(11 i\t/2msz
2). Consequently we have

ucz~z,t;v0z!u25~2psz
2~ t !!21/2

3expF2
~z2v0zt2gt2/2!2

2sz
2~ t ! G , ~A3!

with sz(t)5usz(t)u5sz(11(\t/2msz
2)2)1/2.

Note that sz(t) is negligible compared to,1 (sz

50.3 mm andt/2msz 51023 mm are negligible compared
to ,1576 mm for an average crossing time inside the int
ferometer oft;200 ms). Therefore (2psz

2(t))21/2exp@2 (z
2v0zt2gt2/2)2/2sz

2(t)#.d0(z2v0zt2 gt2/2), and if z0 is
the initial position of the particle, we havez.z01v0zt
1 gt2/2 at timet.
7Michel Gondran and Alexandre Gondran
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APPENDIX B: CALCULATION OF THE ATOM’S
TRAJECTORIES

The velocity~18! applied to Eq.~A2! gives the differential
equation for the vertical variablez

dz

dt
5vz~z,t !5

1

m

]S

]z
5v0z1gt1

~z2v0zt2gt2/2!\2t

4m2sz
2sz

2~ t !
~B1!

from which we find

z~ t !5v0zt1
1

2
gt21z0

sz~ t !

sz
. ~B2!

Equation~B2! gives the classical trajectory ifz050 ~the cen-
ter of the wave packet!.

The velocity ~18! applied before the slit to Eqs.~9! and
~11! gives the differential equations in thex andy directions

dx

dt
5vx~x,t !5

1

m

]S

]x
1

\

2mr

]r

]y

5v0x1
~x2v0xt !\

2t

4m2s0
2s0

2~ t !
2

\~y2v0yt !

2ms0
2~ t !

, ~B3a!

dy

dt
5vy~x,t !5

1

m

]S

]y
2

\

2mr

]r

]x

5v0y2
~y2v0yt !\

2t

4m2s0
2s0

2~ t !
1

\~x2v0xt !

2ms0
2~ t !

. ~B3b!

It then follows that

x~ t !5v0xt1Ax0
21y0

2 s0~ t !

s0
cosw~ t !, ~B4a!

y~ t !5v0yt1Ax0
21y0

2 s0~ t !

s0
sinw~ t ! ~B4b!

with w(t)5w01arctan(2 \t/2ms0
2), cos(w0)5 x0 /Ax0

21y0
2,

and sin(w0)5 y0 /Ax0
21y0

2. Equations~B4a! and ~B4b! give
the classical trajectory ifx05y050 ~the center of the wave
packet!.

After the slits, the velocity vx(x,t)
5 \/m Im(]c/]xc* )/cc* given by Eq.~18! can be calcu-
lated using Eqs.~6!, ~14a!, and~14b!. We obtain

vx~x,t !5
1

t2t1
Fx1

21

2~a21b t
2!

S b t ImS C~x,t !

H~x,t ! D
1a ReS C~x,t !

H~x,t ! D2b tgx,tD G ~B5!

with

H~x,t !5E
XA2b

XA1b

f ~x,u,t !du1E
XB2b

XB1b

f ~x,u,t !du, ~B6!

C~x,t !5@ f ~x,u,t !#u5XA2b
u5XA1b

1@ f ~x,u,t !#u5XB2b
u5XB1b , ~B7!

whereXA andXB are the centers of the two slits, and whe

f ~x,u,t !5exp@~a1 ib t!u
21 igx,tu#, ~B8!
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a52
1

4s0
2S 11S \t1

2ms0
2D 2D , ~B9!

b t5
m

2\ S 1

t2t1
1

1

t1S 11S 2ms0
2

\t1
D 2D D , ~B10!

gx,t52
mx

\~ t2t1!
. ~B11!
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