Numerical simulation of the double slit interference with ultracold atoms
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We present a numerical simulation of the double slit interference experiment realized by F. Shimizu,
K. Shimizu and H. Takuma with ultracold atoms. We show how the Feynman path integral method
enables the calculation of the time-dependent wave function. Because the evolution of the
probability density of the wave packet just after it exits the slits raises the issue of interpreting the
wave/particle dualism, we also simulate trajectories in the de Broglie—Bohm interpretatianos©
American Association of Physics Teachers.

[DOI: 10.1119/1.1858484

I. INTRODUCTION integral method?® However, this calculation has some limi-
tations. It covered only phenomena after the exit from the

In 1802, Thomas Young1773-1829, after observing Slits, and did not consider realistic slits. The slits, which
fringes inside the shadow of playing cards illuminated by thecould be well represented by a functi@(y) with G(y)
sun, proposed his well-known experiment that clearly shows=1 for — g<y<p andG(y)=0 for |y|> 3, were modeled
the wave nature of light.He used his new wave theory to by a Gaussian functiom(y):e—yzmﬁz_ Interference was
explain the colors of thin filmgsuch as soap bubblesaind,  found, but the calculation could not account for diffraction
relating color to wavelength, he calculated the approximatt the edge of the slits. Another simulation with photons,
wavelengths of the seven colors recognized by Newtonith the same approximations, was done recefitigome
Young's double slit experiment is frequently discussed injnteresting simulations of the experiments on single and
textbooks on quantum mechantcs. _ __double slit diffraction of neutrorfsvere doné’

‘Two-slit interference experiments have since been realized The simulations discussed here cover the entire experi-
with massive objects, such as electrdnneutrons® cold  ment, beginning with a single source of atoms, and treat the
neutrons, atoms,® and more recently, with coherent en- gjit realistically, also considering the initial dispersion of the
sembles of ultracold atont$;'? and even with mesoscopic velocity. We will use the Feynman path integral method to
single quantum objects such ag,@nd Gg. > calculate the time-dependent wave function. The calculation

This paper discusses a numerical simulation of an experiand the results of the simulation are presented in Sec. II. The
ment with ultracold atoms realized in 1992 by F. Shimizu, K. evolution of the probability density of the wave packet just
Shimizu, and H. Takum&. The first step of this atomic in- after the slits raises the question of the interpretation of the
terference experiment consisted in immobilizing and coolingwave/particle dualism. For this reason, it is interesting to
a set of neon atoms, mass=3.349x 10 2° kg, inside a simulate the trajectories in the de Brodfi@nd Bohni® for-
magneto-optic trap. This trap confines a set of atoms in analism, which give a natural explanation of particle impacts.
specific quantum state in a space=efl mm, using cooling These trajectories are discussed in Sec. lIl.
lasers and a nonhomogeneous magnetic field. The initial ve-
locity of the neon atoms, determined by the temperature of
the magneto-optic trafapproximatelyT=2.5 mK) obeys a |l. CALCULATION OF THE WAVE FUNCTION
Gaussian distribution with an average value equal to zer§VITH FEYNMAN PATH INTEGRAL
and a standard deviatiom, = kg T/m=1 m/s; kg is Boltz-
mann’s constant.

To free some atoms from the trap, they were excited wit
another laser with a waist of . Then, an atomic source e
whose diameter is about><31§9r‘r’nm and 103 m in thez  dard deviationso=o,= o, =10 um. We also assume that
direction was extracted from the magneto-optic trap. A sub:[h_e wave function is Gaussian (th.e yertlcal variable
set of these free neon atoms start to fall, pass through ¥ith zero average and a standard deviatigr-0.3 mm. The
double slit placed af, =76 mm below the trap, and strike a ©rigin (x=0,y=0z=0) is at the center of the atomic source

detection plate af,=113 mm. Each slit ib=2 um wide, ~and the center of the Gaussian. .
and the distance between slits. center to centerd is The small amount of vertical atomic dispersion compared

—6 um. In what follows, we will call “before the slits” the to typical vertical distances; 100 and 200 mm, allows us to

space between the source and the slits, and “after the slitsmake a few approximations. Each source atom has an initial

; : velocity v=(voy,vgy,Vo,) @and wave vector k
th the oth f the slits. Th f the at X1 7Oy oz
e space on the other side of the slits. The sum o eaoml\é(kOX,koy,koz) defined ask=mv/%. We choose a wave

impacts on the detection plate creates the interference pattern ; . ST .
shown in Fig. 1. number at random according to a Gaussian distribution with

The first calculation of the wave function double slit ex- 280 average and a standard deviatiop= oy = oy =0,
periment using electrofisvas done using the Feynman path =mo, /v32=2x10® m™?, corresponding to the horizontal

In the simulation we assume that the wave function of
heach source atom is Gaussianxnandy (the horizontal
variables perpendicular and parallel to the ghitsth a stan-
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cold atoms m 1/2
e KiZg,tg:Za te)=| 57—
sum 25t ) <2mﬁ(tﬁ—ta))
76 mm im (ZB—ZQ)Z im g
Xexp?(m exp7 E(ZBJ’_ZQ)
92
X(tg—ta)—ﬂ(tﬁ—ta)3). (50

113 mm
For each atom with initial wave vectdr, let us designate

by #(a,t,;k) the wave function at timg, . We call S the set

1mm of points @ where this wave function does not vanish. It is

then possible to calculate the wave function at a later tigne

at pointsg such that there exits a straight line connecting

andpfor any pointa e S. In this case, Feynmahhas shown

and vertical dispersion of the atoms’ velocity inside the cloudthat:

(trap. For each atom with initial wave vectdr, the wave

function at timet=0 is (Bt Kox Koy . Koz)

$o(X,¥,Z;Kox Koy s Koz) = o, (X; Kox) Yo, (Z;Koy) Y0,(Z; Koz) = f K(B,ta,t,)
(Xq Yo 1Za) €S

Fig. 1. Schematic configuration of the experiment.

_ —X2/402
:(2770_3) 1/4e X/4‘Toe'k0xx

X‘/I(aata;k0x1k0y7k0Z)an1dya1dZa' (6)
2\ — 14— y2l402 nikoyy _ _
X(2mog) e e For the double slit experiment, two steps are then neces-
4 — 21452 sary for the calculation of the wave function: a first ste
X (2moy) Mo Flnelor (1) bef)c;re the slits and a second step after the slits. P
The calculation of the solutions to the Sctiimger equa- If we substitute Eqs(1) and (4) in Eg. (6), we see that
tion were done with the Feynman path integral metffod, Feynman'’s path integral allows a separation of variables, that
which defines an amplitude called the kernel. The kernels
characterizes the trajectory of a particle starting from the
point a=(x,,Y,,z,) at timet, and arriving at the poing P(x,y,2,tKox Koy Koz)

=(_xﬁ Yp 1Zp) attimets. The kernel_is a sum of aI_I possible = (X, 1 Kox) (Y, 1 Koy) (2,1 Kop). (7)

trajectories between these two points and the timeand

t.. References 11 and 21 treat the vertical variablgassi-
By using the classical form of the Lagrangian cally, which is shown in Appendix A to be a good approxi-

mation. Hence, we have(t) =z,+vo,t+gt?/2. The arrival

2 ‘2 52
L(X.y.2.2 t)=mx—+m—+mz—+mgz (27 time of the wave packet at the slits it (vo, 2o)
2 2 2 =2(€1—20)/9 + (vo,/9)%>— vo,/g. For vy,=0 and zq
Feynmanr® defined the kernel by =0, we have,;=\2¢,/g=124 ms and the atoms have been
i accelerated taw,;=gt;=1.22 m/s on average at the slit.
K(ﬁ,tﬁ;a,ta)~exy{—sc|(,8,tﬁ;a,ta)> Thus the de Broglie wavelength=7%/mv,;=1.8<10"8 m
h is two orders of magnitude smaller than the slit widthyra.
i [t Because the two slits are very long compared with their
:ex;{%f L(x,y,'z,z,t)dt), (3) other dimensions, we will assume they are infinitely long,
ta and there is no spatial constraint ynHence, we have for an
with [ 272K (B,t5; a,t,)dx,dy,dz,= 1. Hence initial fixed velocity vy
K(Bitgia,t,) =Ku(Xg,tg:Xa ta) Ky(Yp,tp;Vaits)
F XTEE yRBE ‘/’y(yvt;kOy): Ky(yvt;ya1ta:O)¢0(ya;k0y)dya'
X KZ(Zﬁutﬁ;Za !ta) (4) Ya
: 8
with
m 12 Thus
Ku(Xg,tg:Xa,te) = —) _ 2
@l 2imh(tg—t _ (Yy—voyt)
st Iy tikoy) = (27(1) 1’4exp[— s
im [ (Xg—X,)? 70>
xexp| 5=y ) (5a)
B la +iKoy(y—voyt) 9)
m 1/2
Ky(¥p:tgi¥asta) = ZiWﬁ(tB—ta)) with so(t) = oo(1+ iAt/2ma?).
. a2 The wave packet is an infinite sum of wave packets with
% pﬂ(M) (5b) fixed initial velocity. The probability density as a function of
ho\2(tg—t,))’ y is
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/\ X
source S (%0520, 0)
(Xa’|1 ,t1(VOZ,ZO)) (Xb’ |1 ’t1(vOZ’ZO))
slit A slit B
% 100 % X (um)
x,z,1)
Fig. 2. Densityp,(x,z) before the slits. The time evolution is obtained from
the figure by using=z,+vo,t+ gt?/2. z

Fig. 3. Schematic representation of the experiment: calculation method of
the wave function after the slits.

+

py(y,t)= f (2mr?) Y% ki/ZTzl ¢y(Y-t;ky)|2d ky

:(gwsg(t))—me—yz/%é(t) (10) Yp= jBKx(Xrt;betl(UOszo))

with  ed(t)=o5(t)+ (Aita/m)2  and  oj(t) =0} X i (Xp 11 (0051 Z0) : Kox) A% (14b)
+( t/2ma§)2. Because we know the dependence of the prob-
ability density ony, in what follows we consider only the wherey,(X,,t1(voz,20);Kox) and e, (Xp,t1(voz,20);Koy) are
wave functiong,(X,t;Koy). given by Eg. (11), whereasK,(x,t;X4,t1(voz,20)) and

Ky(X,t;%p,t1(voz,20)) are given by Eq(5a).

The probability density is

A. Wave function before the slits
+ o

Before the slits, we have Px(X,t;koZ,Zo)Zf (27 2) 12
X—voxt)? o
lﬁx(X,tikOx)Z(ZWSS(t))_lMGXF{ - % K2
X
i xexp(—m)wa,t;koX,koZ,zo>|2dk0x.
+iKox(X—vgyt) |, (11) (19
2 ey 1/2 x? The arrival timet, of the center of the wave packet on the
px(X,1)=(2meg(1)) 7" exp — 262(1) | (120 getecting plate depends om, and vg,. We havet,

=V2(€1+€,—20)/g + (v0,/9)*— vo,/9. For z,=0 and

It is in;e[)est:]ng;hat th(_e scaftt?]rin_g _o_f Ithe wave padclget irr? v0,=0, t,=2(€1+0,)/g=196 ms and the atoms are ac-
caused by the dispersion of the initial positiop and by the .| ated tw,,=gt,=1.93 m/s.

dispersiong, of the initial velocityvo, (see Fig. 2 Only Th : ) :
. . e calculation ofp,(X,t;Kkq,,2g9) at any ,t) with ko,
0, .
0.1% of the atoms will cross through one of the slits; theand 2, given andt=t, is done by a double numerical inte-

others will be stopped by the plate. gration: (a) Eq. (15) is integrated numerically using a dis-
cretization ofkg, into 20 values;(b) the integration of Eq.
B. Wave function after the slits (13) using Eqs(14) is done by a discretization of the slits
andB into 2000 values each. Figure 4 shows the cross sec-
The wave function after the slits with fixezh andko,  tions of the probability density|¢a+ ¢g|?) for z,=0, ve,
=Muvg,/ for t=t;(vo,,2p) is deduced from the values of _ (ko,=0) and for several distances\¢= %gtz—%gtf)
the wave function at slits A and Bsee Fig. 3by using EQ.  after the double slit: 1 and 1@m, and 0.1, 0.5, 1, and 113

(6). We obtain mm.
(X, Kox Koy 1 Z0) = Ya+ ths (13) The calculation method enables us to compare the evolu-
with tion of the probability density when both slits are simulta-

neously operiinterference]ya+ ¢5|?) with the sum of the

evolutions of the probability density when the two slits are
¢A=J Ku(X,t;Xa ,t1(v0z,20)) successively opene¢sum of two diffraction phenomena:
A (|al?+|l?). Figure 4 shows the probability density

X hy(Xa 11(v02.20) 1 Kox) dXq (148 (|al?+]|ysl?) for the same cases. Note that the difference
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(a) : lum , (b) : 10um

'
‘n

0 5.-5 0 S
(pumn) (pum)

(c):0.1 mm

: - o Fig. 6. (Color online) Evolution of the probability density,(X,t;ko,

()~ (ym) =0,2,=0) for the first millimeter after the slits.

() : 113 mm

C. Comparison with the Shimizu experiment

In the Shimizu experiment, atoms arrive at the detection
, k screen between=t,;, and t,.. To obtain the measured
probability density in this time interval, we have to sum the
‘ » - probability density above the initial positiary and their ini-
-10 0 iy 08 0 w3 tial velocity vy, compatible witht i, <t,<t, ¢, that is

Xttt
Fig. 4. Comparison betwed,+ | (plain line) and || 2+ |g|? (dot- Px(X,min ma)
ted ling with zo=0 andky,=0 at(a) 1 um, (b) 10 um, (c) 0.1 mm,(d) 0.5 f
t

mm, (¢) 1 mm, and(f) 113 mm after the slits. = Px(X,t2:Koz,20)

min=t2=tmax
W2 52 25 2
xe kOZ/ZTe ZO/ZUdeOZdZO_ (]_6)

between the two phenomena does not exist immediately athe positions at the detection screen can only be measured to
the exit of the two slits; differences appear only after someabout 80um, and thus to compare our results with the mea-
millimeters after the slits. sured results, we perform the average

Figures 5—7 show the evolution of the probability density. Yt <t<t
At 0.1 mm after the slits, we know through which slit each Pmeasuret, tmin<1=tmax)
atom has passed, and thus the interference phenomenon does 1 J'x+40 um

not yet exist(see Figs. 4 and)7Only at 1 mm after the slits
do the interference fringes become visible, just as we would

expect by the Fraunhoffer approximatiee Figs. 4 and)6  Figure 8 compares those calculations to the results found in

”l

Fig. 5. (Color online) Evolution of the probability densityp,(x,t;ko, Fig. 7. (Color online) Evolution of the probability density,(x,t;kq,
=0,2,=0) from the source to the detector screen. =0,zp=0) for the first 100um after the slits.

= L <t< _
80 pm Jy a0 Mmp(uatmm t<tpndu (17)
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Ly VS) 0 (21)
—+V.| p—|=0,
(b) 175-208ms at m
' with  initial conditions S(x,y,z,0)=Sy(X,y,z) and
— B p(X,Y,2,0)= po(X,y,2).
e In both interpretationsp(x,y,z,t)=|¢(x,y,z1)|? is the
T (o) 12-175ms probability density of the particles. But, in the Copenhagen
T b e I e interpretation, it is a postulate for eathconfirmed by ex-
: perience. In the de Broglie—Bohm interpretation, if
(@) 108-142ms /\ po(X,Y,2) is the probability density of presence of particles
", A « for t=0 only, thenp(x,y,z,t) must be the probability den-
i e — sity of the presence of particles without any postulate be-
AA/\ cause Eq(21) becomes the continuity equation
' [(e) 75-108ms
ap
B T — V(=0 (22
(1) 42-75ms (thanks tov=VS/m+V X (Inp/m)s), which is obviously

, the fluid mechanics equation of conservation of the density.
st Tt — The two interpretations therefore yield statistically identical
results. Moreover, the de Broglie—Bohm theory naturally ex-
Fig. 8. Comparison of the probability density measured experimentally byplains the individual impacts.
Shimizy(see Ref. l).(_left) and the probability density calculated numeri- In the initial de Broglie—Bohm interpretatidﬁ',lg which
cally with our model(righ). was not relativistic invariant, the velocity was not given by
Eq. (18), but by v= VS/m which does not involve the spin.
In the Shimizu experiment, the spin of each neon atom in
Ref. 11. The experimental fringe separation is narrower thathe magnetic trap was constant and verticat:(0,0£/2).
in our calculation, see Figs. 8 and 11. This difference isin our case the spin-dependent teri¥ logp/mXs
explained by a technical problem in the Shimizu = #/2mp (dp/dy,— dpldx,0) is negligible after the slit, but
experiment* not before.
For the simulation, we choose at randd¢from a normal
distribution (0,0,0;0,0,0%) the wave vector k
ll. IMPACTS ON SCREEN AND TRAJECTORIES = (Kox Koy . ko) to define the initial wave functioft) of the
- : . . atom prepared inside the magneto-optic trap. For the de
In the Shimizu experiment the interference fringes are ObBroine—Bohm interpretation, we also choose at random the

served through the impacts of the neon atoms on a detecthHitial position (X,Y.2o) Of the particle inside its wave

screen. It is interesting to simulate the neon atoms’ trajecto- A
ries in the de Broglie—gBohm interpretatiéhl®2223.2% J packet (normal distribution f((0,00);(0g,09,0;))). The

‘which ) . .
accounts for atom impacts. In this formulation of quantum{raectories are given by

mechanics, the particle is represented not only by its wave dx 10S Hh dp

function, but also by the position of its center of mass. The 7 =vx(X,t)= — —+ 57— —, (239
atoms have trajectories which are defined by the speed dt m ox. 2mp dy
v(X,Y,z,t) of the center of mass, which at positiox,y,z) at dy 19S & dp
time t is given by** qr - o= ay  2mp ax’ (23
VS(x,y,z,t) Vlogp(x,y,z,t)Xs dz 1 9S
V(X,y,z,t)= m + m —=v,(x,t)=——, (230
dt m 9z

where p(X,y,t;Kox ,Koy) = | (X, t; Kox) Py (y.t; I(Oy)|2 and g

s
T mp IM(y™V )+ Re(ys le)xﬁ - (18 ond ¥, are given by Eqs(8)—(13).

where ¥(x,y,z,t) = Vp(X,y,z1t) exp((/A)S(x,y,zt)) ands is . . .
the spin of the particle. Let us see how this interpretation®: Trajectories before the slits

gives the same experimental results as the Copenhagen mter—Before the slits, Appendix B giveg(t) =z o,(t)/ o,

pretation.
If y satisfies the Schrbnger equation +uot+ 391, X(t) =voxt+ VXo T Yooo(t)/ o cose(t), and
PR y(t)=voyt+ VXg+ygoo(t)/ ogsing(t), with  o(t)=¢o
ih5=—ﬁvzw+v¢ (19 +arctan-Ati2ma3), cos<p0=x0/\/x02+y02 and  singg

=y0/\/x02+y02. For a given wave vectdt and an initial po-
with  the initial  condition ¢(X,y,z,0)=o(X,y,2)  sition (xg,Yo.Zo) inside the wave packet, an atom of neon

=po(X,Y,2) exp((i/h)S(xy,2), thenp and S satisfy will arrive at a given position on the plate containing the
5 slits. Notice that the terriv log p>xX§/m adds to the trajectory
‘9_84_ i(VS)ZJrV_ ﬁ_ ﬂ;:o (200  defined byVS/m a rotation of —#/2 around the spin axis
gt 2m 2m [, (the z axis).
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slit A shtB slitA  slitB
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Fig. 9. Trajectories of atoms before the slit. Note that if the initial velocities
[voy =3.9x10 4 m/s, then no atoms can cross the slit.

The source atoms do not all pass through the slits; most ofJ0
them are stopped by the plate. Only atoms having a small
horizontal velocityvq, can go through the slits. Indeed an
atom with an initial velocity o, and an initial positiorxy, Y, Fig. 10. Trajectories of atomi&g,=ko,=0).
arrives at the slits at=t; at the horizontal positiox(t;)

=voxt1t+Yoloo(ty)/op). For this atom to go tﬁrough one of Impacts on the screen

the slits, it is necessary th@(t,)|<X, with Xx=(d+b)/2 _ _ _

=4x10 % mand—20,<y,<20, andt;=0.124 s. Conse- We observe the impact of each particle on the detection

quently, it is necessary that the initial velocities of the atomsSCT€€n as shown by the last image in Fig. 12. The classic

satisfy [vg,| < (X+200(ty))/t;=0p=3.9x10* m/s. The explanation of these individual impacts on the screen is the
MES =3 . . Lo o

doubie slit filters the initial horizontal velocities and trans- feduction of the wave packet. An alternative interpretation is

forms the source atoms after the slits into a quasi_that the impacts are due to the decoherence caused by the

monochromatic source. The horizontal velocity of an ato ntler?rc]:nodn Vé'th tlhe rge%su:cemenlt ?ppar?tus. i h
leads to a horizontal shift of the atom’s impacts on the de- n the de broglie—bohm formulation of quantum mechan-

tection screen. The maximum shiftAx=og,At, whereAt ics, the impact on the screen is the position of the center of

is the time for the atom to do from the slits to the screen2SS of the particle, just as in classical mechanics. Figure 12
(At=t,~1,~0.072 s); hench~2 8% 10°5 m. This shift shows our results for 100, 1000, and 5000 atoms whose ini-
2 1 ' o X tial position (Xq,Yo,Zp) are drawn at random. The last image

does not produce a blurring of the interference fringes beéorresponds to 6000 impacts of the Shimizu experirfent.

cause the interference fringes are separated from one anothﬁge simulations show that it is possible to interpret the phe-

by 25x10 m_>Ax. Note thaF if the source was nearer 10 n,meng of interference fringes as a statistical consequence of
the double slit(for example if £,=5mm, thenAx=10 particle trajectories.

X 10°° m), the slit would not filter enough horizontal ve-
locities and consequently the interference fringes would nofy sSUMMARY
be visible.

The system appears fully deterministic. If we know the We have discussed a simulation of the double slit experi-
position and the velocity of an atom inside the source, therment from the source of emission, passing through a realistic
we know if it can go through the slit or not. Figure 9 shows
some trajectories of the source atoms as a function of their
initial velocities. Only atoms with a velocith o,| <voy can
go through the slits.

I

B. Velocities and trajectories after the slits

In what follows, we consider only atoms that have gone
through one of the slits. After the slits, we still hazé&)
=vo.t+39t°+2z9(o,(t)/0o,), but nowwv,(t) andovy(t) and 2™
x(t) andy(t) have to be calculated numerically. The calcu-
lation of v,(x,t) is done by a numerical computation of an
integral in x above the slits A and Bsee Appendix B
x(t) is calculated with a Runge—Kutta metht®dWe use
a time stepAt which is inversely proportional to the accel-
eration. At the exit of the slit, At is very small: At
=108 s; itincreases tat=10"* s at the detection screen.
Figure 10 shows the trajectories of the atoms just after the

slits; xo andy, are drawn at randong,=0, with v, =vo, Fig. 11. Zoom of trajectories of atoms for the first millimeters after the slit
= o (k0x=k02=0)-
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100 atoms 1000 atoms

(a) (c)
Fig. 12. Atomic impacts on the screen
of detection. Results fofa) 100, (b)
1000, and(c) 5000 atomsjd) the last
image corresponds to 6000 impacts of
the Shimizu experiment.

(b) (d)

double slit, and its arrival at the detector. This simulation is

! - . . . 2 —1/4 (Z_UOZt_th/Z)Z
based on the solution of Schimger's equation using the P2, Ko,) =(2ms5(t)) " "“exg —

Feynman path integral method. A simulation with the param- 4051

eters of the 1992 Shimizu experiment produces results con- im

sistent with their observations. Moreover, the simulation pro- X eXF{?((voﬁ gt)(z—vo.t/2)

vides a detailed description of the phenomenon in the space

just after the slits, and shows that interference begins only mg’t®

after 0.5 mm. We also show that it is possible to simulate the - ” (A2)

trajectories of particles by using the de Broglie—Bohm inter-
pretation of quantum mechanics.
wheres,(t)=o,(1+ iht/2ma§). Consequently we have

[ (2,t00,) 2= (2mal(t)) 12

APPENDIX A: CALCULATION OF  #,(Z,T;Kg,) (z—vot—gt2[2)2
xex;{ — 202(0) } (A3)
Because there are no constraints on the vertical variable z

we find using Eqgs(5c) and(6) for all t>0 (before and after
the double slit that with o,(t) =|s,(t)| = o,(1+ (fit/2mo?)?) M2

Note that o,(t) is negligible compared tof¢; (o,

l//z(ZatikOZ):f K,zt;2,,t=0)X g (2, :Ko,)dZ,, =0.3 mm andt/2maz=10‘3 mm are negligible compared
S z

to £,=76 mm for an average crossing time inside the inter-
(A1) ferometer oft~200 ms). Therefore (&aﬁ(t))*l’zexp{— (z
where the integration is done over the set S of the paipts  —yg,t—gt%/2)%/202(t) |= 6o(z—vo,t— gt?/2), and if z, is
where the initial wave packefq (z,;Ko,) does not vanish. the initial position of the particle, we have=z,+uv gt
We obtain + gt?/2 at timet.
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APPENDIX B: CALCULATION OF THE ATOM’'S
TRAJECTORIES

The velocity(18) applied to Eq(A2) gives the differential
equation for the vertical variabte

dz 1S . (z—voZt— t2/2)h%t
a_vz(zyt) m (9 =Uoz gt 2 5 2(t)
(B1)
from which we find
1 t
Z(t)=vot+ Egt2+z0 72 ). (B2)

z

Equation(B2) gives the classical trajectoryzf,=0 (the cen-
ter of the wave packgt

The velocity (18) applied before the slit to Eq$9) and
(11) gives the differential equations in tlkxeandy directions

dx 19SS *h c?p
gt o= o 2mp dy
(X—vox) %t A(Yy—vgyt)
= + —
YT AmPolod(t)  2mod(t) (B33
y 109S i dp
dt = XY= 05 T 2mp ax
(Yy—voy)h?t  A(X—vgxt)
—voy— B
YT AmZa202(t) | 2mol(t) (B3b)
It then follows that
oot
X()=vot T X5+ Y5 (‘j( ! coset), (B4a)
0
y()=vo,t+ VXg+Yo—— 3( )Sln(p(t) (B4b)
0

With ¢(t) = @o+ arctan(- #t/2ma2), cosgeg)=Xo/\X2+Y3,
and Sin(DO)ZyO/\/X02+y02. Equations(B4a) and (B4b) give
the classical trajectory ko=y,=0 (the center of the wave
packej.

After the slits, the velocity  vy(X,t)
= AlmIm(alax *)yny* given by Eq.(18) can be calcu-
lated using Eqs(6), (148, and(14b). We obtain

-1 ( (C(X,t))
t " 20 ) | PO D

vX(X,t)=t

C(x,t)
+aR m)—ﬁn’x,t) (BS)
with
Xa+b Xg+b
H(x,t)=f bf(x,u,t)dqufx IDf(x,u,t)du, (B6)
Xa— B~
Cx,H=[f(x,u,t)]"- §Af§+[f X,U,t)]0- XB”;, (B7)

! B9
70 2mo
= m ! + ! B10
C2n| t—ty 2ma3\?\ | (B10)
b hty
mx B11
Yt T Rty (B11)
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